(2)

(Total 6 marks)

Questions are for both separate science and combined science students

Q1.

Figure 1 shows a young child using a baby walker.

Figure 1

	Write down the equation which links distance (s) , force (F) and work done (W) .
٦	The child pushed the baby walker 2.8 m across a horizontal floor.
-	Γhe work done by the child was 35 J.
(Calculate the horizontal force the child applied to the baby walker.
-	
_	Horizontal force =N
	The child pushed the baby walker from a carpet onto a hard floor. The child applied the same horizontal force to the baby walker.
	Explain why the speed of the baby walker increased.
	Typicin why the aread of the behy welker increased

(Total 4 marks)

4	\neg	1
•	J	Z

Use	the Physics Equations Sheet to answer parts (e) and (f).	
(a)	Write down the equation which links distance (s) , force (F) and work done (W) .	
		(1
(b)	When travelling at its maximum speed the air resistance acting on the car is 4000 N.	
	Calculate the work done against air resistance when the car travels a distance of 7.5 km at its maximum speed.	
	Work done =	J
		(3